Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 4, 2026
-
Free, publicly-accessible full text available July 16, 2026
-
Free, publicly-accessible full text available November 10, 2026
-
Free, publicly-accessible full text available August 3, 2026
-
KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language ModelsLarge Language Models (LLMs) have shown impressive performance in various tasks, including knowledge graph completion (KGC). However, current studies mostly apply LLMs to classification tasks, like identifying missing triplets, rather than ranking-based tasks, where the model ranks candidate entities based on plausibility. This focus limits the practical use of LLMs in KGC, as real-world applications prioritize highly plausible triplets. Additionally, while graph paths can help infer the existence of missing triplets and improve completion accuracy, they often contain redundant information. To address these issues, we propose KG-CF, a framework tailored for ranking-based KGC tasks. KG-CF leverages LLMs’ reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.more » « less
-
Large Language Models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently,Knowledge-based Model Editing(KME), also known asKnowledge EditingorModel Editing, has attracted increasing attention, which aims at precisely modifying the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim at providing a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field.more » « less
-
Graph-structured data is ubiquitous among a plethora of real-world applications. However, as graph learning algorithms have been increasingly deployed to help decision-making, there has been rising societal concern in the bias these algorithms may exhibit. In certain high-stake decision-making scenarios, the decisions made may be life-changing for the involved individuals. Accordingly, abundant explorations have been made to mitigate the bias for graph learning algorithms in recent years. However, there still lacks a library to collectively consolidate existing debiasing techniques and help practitioners to easily perform bias mitigation for graph learning algorithms. In this paper, we present PyGDebias, an open-source Python library for bias mitigation in graph learning algorithms. As the first comprehensive library of its kind, PyGDebias covers 13 popular debiasing methods under common fairness notions together with 26 commonly used graph datasets. In addition, PyGDebias also comes with comprehensive performance benchmarks and well-documented API designs for both researchers and practitioners. To foster convenient accessibility, PyGDebias is released under a permissive BSD-license together with performance benchmarks, API documentation, and use examples at https://github.com/yushundong/PyGDebias.more » « less
-
In recent years, Graph Neural Networks (GNNs) have become successful in molecular property prediction tasks such as toxicity analysis. However, due to the black-box nature of GNNs, their outputs can be concerning in high-stakes decision-making scenarios, e.g., drug discovery. Facing such an issue, Graph Counterfactual Explanation (GCE) has emerged as a promising approach to improve GNN transparency. However, current GCE methods usually fail to take domain-specific knowledge into consideration, which can result in outputs that are not easily comprehensible by humans. To address this challenge, we propose a novel GCE method, LLM-GCE, to unleash the power of large language models (LLMs) in explaining GNNs for molecular property prediction. Specifically, we utilize an autoencoder to generate the counterfactual graph topology from a set of counterfactual text pairs (CTPs) based on an input graph. Meanwhile, we also incorporate a CTP dynamic feedback module to mitigate LLM hallucination, which provides intermediate feedback derived from the generated counterfactuals as an attempt to give more faithful guidance. Extensive experiments demonstrate the superior performance of LLM-GCE.more » « less
An official website of the United States government
